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Abstract  
If the optimization design problem considers multiple conflicting objectives, Pareto-optimality results in a number 

of trade-off optimal solutions shaping the Pareto frontier. Each of these solutions to the multicriteria problem 

represents a point in the boundary of the feasible objective space, such that the improvement in one of the 

objectives results in the worsening of at least one of the other objectives. In calculating these points it is important 

to get their uniform distribution and not include non-Pareto or local Pareto solutions. 

The goal of this paper is to study methods of calculating the Pareto frontier and to purpose improvements towards 

obtaining a well-distributed and well-representing set of points for a bicriteria problem. In order to get a better 

distribution of points on the Pareto frontier it is used a strategy following closer the main shape of that frontier. To 

get only the global Pareto points, this strategy sweeps the criterion space just once, getting automatically rid off the 

non-Pareto and local Pareto points, without any further filtering. 
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1. Introduction 
Most real-world engineering design problems have more than one criterion or objective. The multiobjective or 

vector optimal design problem is that of optimizing simultaneously several conflicting objectives. Pareto 

optimality is the concept used to characterize the optimality of multicriteria optimization problems [1,2]. A 

(global) Pareto solution is one such that the improvement in one of the objectives results in the worsening of at 

least one of the other objectives. The set of Pareto points in the criterion space forms the Pareto frontier (Figs. 1, 2). 

This frontier is always on the boundary of the feasible criterion region. Other points on this boundary (but not on 

the Pareto frontier) are local-Pareto and non-Pareto points (Figs. 1, 2). A local-Pareto point is a solution that obeys 

to the Pareto concept only in its neighborhood. Any point is better than another on the Pareto frontier 

(non-dominated points). All the other points are worse than at least one point of this frontier (dominated points). 

There are infinitely many Pareto solutions for a multicriteria optimization problem. A point in the criterion space 

corresponding to the minimum of one objective independently of the other objectives is called an anchor point. 

The point in the criterion space corresponding to the minimum of all objectives independently obtained is called 

the utopia point.  

 

 
 

Figure 1                                                                     Figure2 

 

Mathematical programming techniques to find the Pareto solutions transform the vector optimization problem into 

a series of scalar optimization problems. A simple and common approach for this scalarization is to optimize a 

weighted sum of the objectives. Each set of weights generates a solution point [3]. However, this approach does 

not get an even distribution of points on the Pareto curve and it obtains points from all parts of the Pareto curve 

only if this curve is convex [4]. 

Another strategy is the Normal Boundary Intersection (NBI) method developed by [5]. This method aims to get the 

Pareto solutions by starting from normal directions to the plane containing all the anchor points (utopia plane or 
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ideal plane) and intersecting the boundary of the feasible domain. This method generates even spread solutions and 

also generates all available Pareto points, but may also generate dominated solutions. Since the criteria are 

generally noncommensurable and their values may differ greatly, normalization has been proposed for the 

criterion space, the normalized values of all criteria ranging from zero to one. 

In [6] is developed the Normalized Normal Constraint (NNC) method. This method works in a normalized 

criterion space and introduces, for each scalar optimization problem, an inequality constraint that splits the whole 

normalized feasible criterion space, and then its boundary, in two regions: a feasible region and an unfeasible one. 

For a bi-objective problem, each scalar optimization problem considers a point on the ideal line and the introduced 

constraint sets to be no greater than zero the scalar product of the vector directed downwards along the ideal line 

and the vector connecting a feasible point to the point on the ideal line (Fig. 3). Then, the scalar optimization 

minimizes the normalized objective 2 subject to the constraint above. The series of scalar problems initializes at 

the anchor point (1,0), i.e., the algorithm advances from right to left. Since this strategy does not guarantee to 

generate only global Pareto points, a post-filtering algorithm is proposed in [6] to keep the solutions off 

local-Pareto and non-Pareto points. 

 

 
 

      Figure 3: NNC method                                   Figure 4: Angular constraint method 

 

In [7] a modification is made to the NNC strategy for bicriteria optimization problems such that no post-filtering is 

needed. Firstly, each scalar optimization problem described above is added a new constraint stating that the current 

value of the normalized criterion 1 should be no greater than its value obtained for the preceding scalar problem; 

secondly, a second series of scalar problems is initialized at the anchor point (0,1), then advances from left to right 

but now minimizing the normalized objective 1 and imposing the new constraint to the normalized objective 2. 

After solving this bi-directional search of scalar problems, the solutions in both directions are compared point by 

point and excluded those that are not coincident. The coincident ones are (global) Pareto solutions. 

The present work proposes a different strategy in order to improve the efficiency and the distribution of the 

solutions relatively to the methods just described. The proposed strategy stems basically in substituting the scalar 

product constraint by a constraint formulated throughout the ray with origin at the point (1,1) of the normalized 

criterion space (Fig. 4). This fashion, no post-filtering is necessary and only is enough the search from right to left 

of the scalar optimization problems. Besides that, since the rays originated at the point (1,1) go along better with 

the global curvature of the Pareto frontier than the normal directions to the ideal line, then we get a better 

distribution of solutions along that frontier. 

 

2. The Bicriteria Optimization Problem 
The bicriteria optimization problem is formulated as 
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design vector with n components 
i

b which lower and upper bounds are respectively 
il

b and 
iu

b . By using the 

Pareto concept, this problem has infinitely many Pareto solutions, the Pareto points. Each point in the design space 

corresponds to a point in the criterion space. The Pareto solutions form the Pareto frontier and are on the boundary 

of the feasible objective space.  

Since the values of the criteria components may differ greatly, they are normalized as 
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corresponding to the minimization of 
0k

Ψ  independently of other criteria, and max

0k
Ψ is the maximum value of 

0k
Ψ  when all the objectives are independently minimized. This way, the values of the normalized criteria 

components range from 0 to 1. The problem of  Eqs. (3) is solved for k =1 and k =2 to get the anchor points of the 

normalized criterion space (0,1) and (1,0) respectively (Figs. 3,4). The utopia point in this space is the point (0,0). 

 

3. The Normalized Normal Constraint Method 
By this method [6], the utopia or ideal line in the normalized criteria space (Fig. 3) is divided in s segments, this 

way setting a grid of evenly distributed points 
0 01 02

( , )p p pI I I
≡ Ψ ΨΨΨΨΨ  on this line. The segment size is equal to 2 s . 

Define also a left-to-right-direction from the anchor point (0,1) to the anchor point (1,0) as (1,0) (0,1)= −N . 

The series of scalar optimization problems (p = 1,2,…,s-1 ) initializes now at the point 1 1 1
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problem corresponding to the general point 
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ΨΨΨΨ  is stated as 
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where 
01 02

( , )Ψ Ψ  represents the points of the feasible criteria space and i  stands for scalar product. One should 

note that the scalar product constraint obliges the minimization problem to search in a region where the vectors N  

and 
0 0

I−Ψ ΨΨ ΨΨ ΨΨ Ψ  are in opposition. When the scalar product constraint is active, then the solution is found on the 

intersection of the normal to the ideal line at the point 
0

pI
ΨΨΨΨ and the boundary of the normalized feasible criteria 

space. 

This method obtains Pareto solutions evenly distributed but generates other than global Pareto points when the 

boundary of the feasible criteria domain is not convex. So it needs a post-filtering process in order to get rid off 

these non required points as mentioned in [6]. 

 

 

4. A Different Proposed Method: the Normalized Angular Constraint Method 
This article proposes a different strategy that looks to eliminate the drawbacks of the NNC method and gets a better 

distribution of the solutions. Instead using the scalar product constraint of the problem formulated in the Eqs. (4), 

we split the criterion space in two regions, for each scalar optimization problem, by using the ray with origin at the 

point (1,1) that forms the angle
p

β  given as 
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where the points 
0

pI
ΨΨΨΨ on the ideal line were by this method obtained by dividing the objective space in angular 
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segments (Fig. 4). If the number of segments is s, then the segment size will be equal to ( 2) sπ . Hence, the 

criterion space is split by the line 
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tan (1 ) 1 0
p

βΨ + − Ψ − =  (6) 

and the feasible region will be the region above this line. Since this line goes better with the global curvature of the 

feasible space boundary, we may obtain a better distribution of solutions. The scalar problem may be formulated as 
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The series of scalar optimization problems (p = 1,2,…,s-1 ) starts, as for the NNC method, at the point 1

0

IΨΨΨΨ  nearest 

the anchor point (1,0), where now 
1

2 ( 2) ( 2)(1 1 )s sβ π π π= − = − . 

Points in non-convexities as from A to C in the Fig. 5 are automatically eliminated if we use the angular constraint. 

Points in non-convexities as from D to F in the Fig. 7 are automatically filtered by the constraint 1

01 01

p p−Ψ ≤ Ψ . 

 

5. Examples 
Consider two very simple examples. The first one is an example solved in [6,7] and presents a non-convexity on a 

part of the feasible space boundary where the relationship 
02 01

Ψ Ψ is smaller; the other one is presented here to 

show the case where the non-convexity is where the relationship 
02 01

Ψ Ψ is larger. Both are going to be solved by 

using the method introduced in this paper. Mathematical programming has been used. 

 

5.1. Example 1 

Consider the following optimization problem: 
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The normalized criteria of this problem, by using the Eq. (2), may be written as 

 
01 1 02 2

0.20018 0.00090368, 0.21296 0.064818b bΨ = − Ψ = −  

The boundary of the feasible criterion area of this problem is shown in the Fig.5. The boundary zones between the 

points (0,1) and C and between A and (1,0) are the global Pareto frontier. The points on the segment CB are 

non-Pareto points and the points on the segment BA are local Pareto points. 

 

 
 

Figure 5                                                          Figure6 
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The results obtained by the angular constraint method with a grid of rays of 1.5 º angular size (60 segments), are 

shown in the Fig. 6. We may observe the algorithm has filtered the points between A and C, and has kept only the 

global Pareto points. The Pareto frontier goes from the lower anchor point to the point 14 at 69º, then for a 

constraint at β = 67.5º the point 15 jumps to 45.283º. Then goes on from 45º until the 1.5º and the anchor point 

(0,1). So, they have been avoided 15 minimizations in 59. The Pareto points are well-distributed due to the near 

perpendicularity between the rays and the Pareto frontier. The distance between the point (1,1) and this frontier 

varies between 0.98305 for point 1 and 0.74567 for the point 14, and between 0.97578 for the point 30 and 0.99529 

for the point 59. 

By using the NNC method, the local-Pareto points of the zone AB were also calculated, needing a post filtering 

process to vanish them. 

 

5.2. Example 2 

Consider now the optimization problem 
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where, relatively to the first example were exchanged the roles of b1 and b2 in the constraint. 

The normalized criteria of this problem, by using the Eq. (2), may be written as 

 
01 1 02 2

0.21296 0.064818, 0.20018 0.00090367b bΨ = − Ψ = −  

The boundary of the feasible criterion area of this problem is shown in the Fig.7. The boundary zones between the 

points (0,1) and D and between F and (1,0) are the global Pareto frontier. The points on the segment DE are 

non-Pareto points and the points on the segment EF are local Pareto points. The results obtained by the proposed 

method with the same grid as in the Example 1, are shown in the Fig. 8. Again we may observe the algorithm has 

filtered the points between D and F, keeping only the global Pareto points. The Pareto frontier goes from the lower 

anchor point to the point 30 at 45º, then for a constraint at β = 43.5º the point 31 jumps to 21.523º. Then goes on 

from 21º until the 1.5º and the anchor point (0,1). So, they have been avoided 15 minimizations in 59. 

By using the NNC method without post-filtering, the non-Pareto points (zone DE) and the local Pareto points 

(zone EF) were also calculated. 

 

    
 

Figure 7                                                               Figure8 

 

6. Concluding Remarks 
This article proposes a new strategy to calculate the global Pareto solutions for a biobjective optimization problem. 

The method can calculate the scalar minimization sub-problems in only one-direction series and filtering 

automatically all the local Pareto and non-Pareto solutions, this way increasing the efficiency relatively to other 

strategies as, namely, the Normalized Normal Constraint method. Also, the method presented may obtain a better 

distribution of the Pareto points, since it is based on the division of the criterion space by rays originated at the right 

upper corner and directed nearly perpendicular to the Pareto frontier. 
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